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We consider lattice versions of Maxwell's equations and of the equation that 
governs the propagation of acoustic waves in a random medium. The vector 
nature of electromagnetic waves is fully taken into account. The medium is 
assumed to be a small perturbation of a periodic one. We prove rigorously that 
localized eigenstates arise in a vicinity of the edges of the gaps in the spectrum. 
A key ingredient is a new Wegner-type estimate for a class of lattice operators 
with off-diagonal disorder. 
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1. INTRODUCTION 

Decades after Anderson tl~ described the remarkable phenomenon  of the 
localization in space of electron wave functions in disordered solids, 
physicists have begun to ask whether other waves, say electromagnetic or 
acoustic, can be localized if the propagat ing if the propagat ing media is 
disordered appropriately. ~2'3~ It is well known that the rise of localized 
eigenstates in disordered media and the rise of gaps in the spectrum for 
periodic media are intimately related phenomena,  both due to multiple 
scattering and interference of waves, ~4~ and should be studied simul- 
taneously. Thus, if a periodic medium exhibits gaps in the spectrum and 
then it is slightly disordered, one can expect the rise of localized eigen- 
modes with energies in a vicinity of the edges of the gaps. Physical 
arguments  and nu.merical computat ions,  as well as experiments, indicate 
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the possibility of a gap regime for periodic two-component media. The 
most recent theoretical and experimental achievements in the investigation 
of photonic band-gap structures are published in a series of papers in 
ref. 5. Nevertheless, some theoretical arguments and experimental evidence 
suggest that the existence of gaps and localization for dielectrics and 
acoustic media are not easy to achieve, ~6-9~ i.e., the parameters of such 
media ought to be carefully calculated. In particular, high contrast in two- 
component media and some shapes of atoms of the embedded material 
favor band-gap regime and localization. 

The objective of this article is to give a rigorous proof of the existence 
of exponentially localized eigenstates for lattice models of disordered dielec- 
tric and acoustic media. The disordered media we consider here are 
assumed to be small random perturbations of periodic ones. The relation 
of the models we introduce to the "true" continuous models is similar to 
the relation of the Anderson tight-binding lattice model to the Schr6dinger 
operator. We shall assume here that the initial periodic medium possesses 
a gap in the spectrum, since the existence of gaps in the spectrum for two- 
component media is proved in ref. 10 if the contrast in the dielectric 
constant (or the corresponding coefficient for the acoustic waves) between 
two components is large enough. Using some techniques from refs. 11-13, 
we prove then the existence of exponentially localized states in a vicinity of 
the edges of the gaps in the spectrum. A key ingredient is a new Wegner- 
type estimate for a class of lattice operators with off-diagonal disorder. 

Basic properties of wave propagation in a nonhomogeneous medium 
eventually boil down to the spectral properties of the relevant self-adjoint 
differential operators with coefficients varying in the space. These operators 
for electromagnetic and elastic waves have, respectively, the forms 

A ~ = V x  (~(x)V x ~), 7 ( x ) = e - l ( x ) ,  x ~ R  3 (1) 

F ~ =  - ~  ~ ~ j= ,  0, x e  R (2) 

According to the philosophy of Anderson localization, ~1) if the coef- 
ficient ~(x) is a random field and the operator A or F has gaps in the 
spectrum, localized states can appear in a vicinity of the edges of the gaps 
in the spectrum. We justify this philosophy for the lattice versions of 
operators A and F. Namely, we consider here the discrete analogs of these 
operators by replacing the operations of differentiation by their finite- 
difference counterparts. From now on the symbols A and F will refer to the 
lattice versions of the corresponding operators in (1) and (2). We shall 
assume: 
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(i) The random coefficient "e(x) is a small perturbation of a periodic 
one, Vo(X). 

(ii) 7o(X) is such that the operator A o or Fo has gaps in the spectrum. 

Under these conditions we prove the existence of localized states, i.e., pure 
point spectrum, with probability 1 for the operators A or F, in a vicinity 
of the edges of the gaps of these operators. The assumption (ii) above is 
fulfilled in physically interesting cases/1ol 

The disorder associated with the lattice operators A and F is a type of 
off-diagonal disorder. A more restrictive type of off-diagonal disorder was 
studied in refs. 14 and 15, where exponential localization at high energies 
is proven. Their random operators are sums of independent random rank- 
one operators, while the operators in the class studied in this paper 
(including A and F) are sums of independent random operators of a fixed 
(but arbitrary) finite rank. 

Remark 1. There is much similarity between the spectral properties 
(and their proofs) of the operators A and F and of the lattice Schr6dinger 
operator we considered in ref. 11. But since there has been doubt about 
whether this is true, especially in the case of the Maxwell operator A, which 
acts on vector-valued wave functions, we set down all necessary estimates 
for this case, including those that are almost the same as for the 
Schr6dinger operator, in order to be perfectly sure that nothing is missed. 

2. S T A T E M E N T  OF R E S U L T S  

We begin with the construction of the lattice operators A and F. In 
order to do this, we first introduce discrete analogs of the partial 
derivatives aj and V as follows. Let Vj, I <~j<~d (d is the dimension of the 
space, i.e., 3 in many interesting cases), be the unitary shift operators acting 
on the Hilbert spaces I2(Z d) of /2(23, C3), which are respectively the 
spaces of C- or C3-valued functions ~ on the lattice Z d or Z 3 with the 
scalar product given by (~0,~k)=~x~o*(x)~k(x). If ej, l<~j<~d, are 
the standard basis vectors in lattice Z d and I is the identity operator, then 
Vj and 0j are defined by 

c3j=I-- Vj, �9 ( V j ~ ) ( x ) =  ~(x--ej) ,  x e Z  d, 1 <~j<~d (3) 

We define the lattice version of V by substituting the partial derivatives by 
their lattice counterparts aj defined in (3). That is, the lattice analogs of 
operators defined by (1) and (2) have respectively the forms 
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A ~ = V *  x (?(x)V x VQ, ? ( x ) = e - t ( x ) ,  x e Z  3 (4) 

d 

r ~ =  - y .  a*~(x )Oj~ ,  x ~ Z  ~ (5) 
j = l  

where the action of the operator V* is defined in terms of the corresponding 
action of the operators O*, 1 <<.j<<.d (see ref. 10 for more details). 

Let us consider first the case of a periodic medium, i.e., the case when 
?(x)=~,0(x) is a periodic function of x, x E Z  a, with the corresponding 
operators A0 and F0 being defined by (4), (5), and (3) (we will refer to 
these operators loosely as periodic operators). Thus, we suppose that these 
exists q =  (q~ ..... qd)E Z d such that 

?o (x+~q)=yo (X) ,  Vx, c( = (cq ..... ~d)eZ  a , otq=(~lq l  ..... Udqa) (6) 

and will call any function ?o satisfying (6) q-periodic. Clearly a q-periodic 
function ?o(X) is uniquely defined by its values on the parallelepiped 

.~={0  ..... q , - 1 } x  --. x { 0 , . . . , q d - - 1 } ~ Z  a (7) 

The lattice operators Ao and Fo are particular examples of the lattice local 
periodic operators we studied in ref. 11. Thus, the following statement 
holds for the operators Ao and F 0. 

P r o p o s i t i o n  1 (Band structure of spectrum). If ?o(X) is a periodic 
function, then the spectrum a 0 of the operator F o (or Ao) consists of a 
finite number J of intervals, namely 

'70 = U L"~j(~ -J'l(~ 0 ~pJ~ ~< ~ (~ , I ~j<~J 

2jol<./~j+(o~_t, l <~ j<~J-1  (8) 

R e m a r k  2. We call the intervals above bands. If J >  1, then clearly 
we have gaps in the spectrum: I-,~ (~ ,,(o~ 1 1 <~j<~J-  1. L ' ' j  ' Y ' j +  I J '  

An example of a periodic medium exhibiting gaps is constructed in 
ref. 10. Since we are interested here primarily in the case of random ?(x), 
we will just assume the existence of gaps for the initial unperturbed 
periodic medium. 

A s s u m p t i o n  1. ?o(X) is a real-valued q-periodic function of 
x, x ~ Z d, such that 0 < Co ~< ~o(X) ~< ca < oo and the corresponding operator 
Fo (or Ao) has at least one gap in the spectrum. 
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We introduce the random coefficient 7(x), which is a perturbation of 
the periodic 7o(X), as follows: 

7(x) = yo(X)[ 1 +g~(x)]  (9) 

where the positive constant g and the random field ((x) satisfy in turn the 
following assumption. 

A s s u m p t i o n  2. r x �9 Z d, are independent, identically distributed 
random real-valued variables on a probability space with probability 
measure P. The probability distribution of ~(0) has a density p with IlPl[ o~ ~< 
Do < oo. There exist constants r and ~2 such that 

- o 0 < ~ 1 < 0 < ~ 2 < o 0  and ~r = [~l, ~2] (10) 

where by Re we denote the essential range of the random real-valued 
variable r 

In addition, in order to keep 7(x) positive, the constant g is small 
enough, namely 

1 + g ~ l  > 0  (11) 

Theorem 1 (Location of the spectrum). Suppose that y(x) is 
defined by (9), where yo(X) and r g satisfy Assumptions 1 and 2, respec- 
tively. Then the following statements hold: 

(i) With probability 1 the spectrum tr(A) of the operator A [or 
a(F)] is nonrandom, i.e., there exists a closed set tr_~ R such that with 
probability 1, a(A)= tr [or a(F)= tr]; in addition, if a o is the spectrum of 
the operator Ao.(Or Fo), then the following representation is true: 

a= U ( l + g t ) a o  (12) 
~ l ~ t ~ 2  

If we use the notations of Proposition 1 and introduce gj by the (ii) 
equality 

.co) t l <~ j <<. J -  2~~ + g j ~ 2 )  = ~,i+ ~, + gj~) ,  1 1 

then for any 0 ~< g < gj the spectrum tr has a nonempty gap 

�9 (o~ tl  ])V,/~j+ 1 [, 2j = 2J~ + g~2) < Uj+, = ~,j+ ~, +g~ , )  

(13) 

(14) 

where 2j, #j+ ~ ~ tr. This gap is associated naturally with the gap j,~ja~c~ u f+" ~o) ~ Lr 
in the spectrum of the unperturbed periodic operator. 

822/76/3 -4-16 
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In other words, Theorem 1 tells us that the spectrum of the r andom 
opera tor  is nonrandom and has a band structure. Moreover ,  taking the 
coefficient g small enough, we can open up any gap in the spectrum which 
is associated with the unperturbed periodic operator .  

Another  object which we shall need to study in order to establish 
exponential  localization is the integrated density of  states N(d2) associated 
with the r andom operators  A and F. More  precisely, we will need a 
Wegner- type estimate for its density N(d2)/d2. 

Some notation: We write 

VX= [-[ V;', x = ( x ,  ..... x~) ,  x E Z  ~ ( 1 5 )  
1 <~j<~d 

We will denote by e ..... x E Z a, ~ = 1, 2 ..... D, the s tandard basis in the space 
12(Ze, CD), i.e., e~.x(~, x) = 1 and e=.x(#, y) = 0 if/~ # ~ or y :/= x. If D = 1, 
we omit  ~. Given an opera tor  A in the Hilbert  space /2(Za, C ~ and 
(9 _~ Z a, we denote by A e, the opera tor  on 12((9, C ~ given by the restriction 
of A to (9 with Dirichlet boundary  conditions, i.e., with matrix elements 
A e((~, x), (3, Y)) = A((~, x), (/~, y))  for all x, y ~ (9 and ~,/~ = 1, 2 ..... D. We 
shall write 1(gl for the number  of elements in (9 and Ixl~ = m a x 1  ~<j~<a Ixj[. 
In addition, we write 

(gs = { x ~ Ze; dist(x, (9) ~< 2s } (16) 

Notice that  1(gsl ~< ( 4 s +  1) a 1(91. 
We have the following general result: 

T h e o r e m  2 (Wegner-type estimate). Let Bo be a nonnegative 
opera tor  of finite rank r in the Hilberty space 12(Za, C~ with 
(Boe ..... %. . , , )=0 unless we have Ixloo, ly l~  ~<s for a given s <  ~ ,  and let 
Bx= V~Bo V-x ,  x e Z  a. Let A be the opera tor  on 12(Z a, C D) defined by 

A =  ~ t_,.Bx (17) 
x ~ Z  d 

on functions with finite support  in Z a, where the tx, x ~ Z a, are nonnegative 
random variables forming a real-valued metrically transitive field on Z a 
(see ref. 16; for instance, they can be independent and identically dis- 
tributed), such that 

E{t~)>oo (18) 

and the conditional probabilit ies px( dt ) = p x( dt, �9 ) = P{ t x E dt [ t.,., y # x } 
satisfy 

p~(dt)<~K(t)dt for any x ~ Z  a (19) 
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for some nonnegative measurable function K(t) on (0, oo), with 

K =  sup tK(t)<oo (20) 
O < t < o O  

Then A is a nonnegative, essentially self-adjoint operator with probability 
1 and, if E(A, d2) is its resolution of identity, i.e., A =~).,R 2E(A, d2), and 

N(A, d2) = E fD-i  ~ (E(A, d2) e ~ , o ,  e~.o) (21 ) 
k 1 ~<0 t~<D 

its integrated density of states, then the density of states ~s estimated as 
follows: 

N(A, d2) rCT 
- - ~  --, 2 > 0  (22) 

d2 

Moreover, for all finite d~ _ Z d and 0 < e < 2 we have 

P{dist(2, or(A,,))~< e} ~< 
2erCT 1(gsl (23) 

In particular, if Assumption 1 is fulfilled, then the operators A and F are 
of the form (17) with r = 3 ,  s =  1 and r=d, s= 1, respectively, so (22) and 
(23) hold for these operators. 

The main result of this paper is the following: 

T h e o r e m  3 (Localization). Suppose the hypothesis of Theorem I 
are satisfied and let us keep the notations of the theorem. Assume that for 
a given j, 1 ~< j ~< J -  1, the constant g satisfies the inequality 0 ~< g < gj. Let 
us pick numbers v• such that ~ l < v  < 0 < v + < r  Then there exists 
p+ > 0  (or respectively /~_ >0)  such that if 

p+=P{r (p_=P{r (24) 

we can find 6+ > 0 (3_ > 0) such that the interval I~ (If) defined by 

U = ] ,~ j -a+ , , l j [  ( U  = ]~,j+,, ~,j+, + a_ [)  (25) 

belongs to the nonrandom spectrum a and with probability t the spectrum 
of F (or A) on this interval is purely pure point and the corresponding 
eigenfunctions decay exponentially at infinity. Moreover, 

lim 6 + = g ( r  (~ ( l im 6 =g(v - ~ 2 ) -  (~ (26) - - j  - - r - j  + 1 
p+ ~ 0  p_ ~ 0  
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We also prove a somewhat different version of Theorem 3 based on 
different assumptions imposed on the random field ~. 

Theorem 4 (Localization). Suppose the hypotheses of Theorem 1 
are satisfied and let us keep the notations of that theorem. Assume that for 
a given j, 1 ~< j ~< J -  1, the constant g satisfies the inequality 0 ~< g < &. 
Suppose that for all e > 0 

P{~2--  ~(x) ~<g} ~< Ce 't (P{~(x)-~,<<.e}<~Ce") (27) 

for some C <  m and r/>d.  Then there exists 6+ > 0  (6_ > 0 )  such that the 
interval I f  (17) defined by 

/7  = ] ~ - a + ,  ;oj[ ( /7 = ]u j+ , ,~ , j+ ,  + a  I-) (28) 

belongs to the nonrandom spectrum cr and with probability 1 the spectrum 
of F (or A) on this interval is purely pure point and the corresponding 
eigenfunctions decay exponentially at infinity. 

The proofs of Theorems 3 and 4 are similar to the analogous results 
for the Schr6dinger operators with diagonal disorder in ref. 11; in par- 
ticular, it employs the multiscale analysis methods from refs. 12 and 13. 

3. PROOF OF T H E O R E M S  1 A N D  2, A N D  AUXIL IARY 
STATEM ENTS 

In this section we investigate the location of the spectrum of the 
operators A and F. Many statements we shall consider are formulated and 
proved in a uniform way for both operators A and F. For this reason we 
will use the symbol 9.I to denote either of them. In addition, whenever we 
shall need to emphasize that 9.I depends on V we write 9-I(7). In order to 
simplify the notations we introduce also the periodic operator a = 9J(Vo) 
which corresponds to either Ao or F 0. 

3.1. Location of the Spectrum 

Some statements we prove here are based on the results established in 
ref. I I. So we describe first some concepts introduced in ref. 11, applying 
them to the operators a and 9.I, which act in Hilbert space 12(Z d, CD), 
where for the operator A we have d =  3 and D = 3, and for the operator F 
we have D = 1. The operator 9.I is local and bounded, c~) 

Defini t ion 1. Let U, v E N  d. If v=nu for some r /EN d, we will write 
u ~ v. If in addition all the coordinates of n are strictly greater than 1, we 
will write u < v. 
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D e f i n t i o n  2. For  u e N  a we define a parallelepiped C " =  
{0 ..... u , - 1 } x  . . .  x {0 ..... u a - 1 } c _ Z  a. We will write C " ~ C  ~ or C " - < C  ~ 

if u ~ v or u ~( v, respectively. 

Following ref. 11, we introduce for the opera tor  a and any C" >- C q the 
finite matrix 

ac.((=, x), (~, y)) = ~ a~.((=, x), (~, y + nu)) 
n E Z d 

x,  y e C " ,  ~ , f l = l  ..... D 

(29) 

Applying Theorem 4 from ref. 1 t to the operators  91(4), we obtained 
the following statement.  

k o m m a  1. Let O(x), x e Z  a, be a u-periodic, positive, real-valued 
function. Suppose that  C,,, n = l, 2 ..... is a sequence of parallelepipeds such 
that C" ~ C,, ~( C,, + ,, n >/1. Then 

a E ~ c , ( 0 ) ]  --q aE~c ,+ , (0 ) ]  (30) 

aE'~(0)] = U ~c.(0), aE'~c.(0)]=--crE~(0)] (31) 
n>~ 1 

We shall also need the following form of Weyl's criterion. 1'71 

Lemma 2 (Distance to the spectrum). Let o~ be a separable Hilbert  
space (in part icular  finite-dimensional space) and A be a self-adjoint 
opera tor  in a f .  Then if a(A) is the spectrum of A and 2 is a real number,  
then 

dist {a(A), 2} = min = II(A -,~)4,11 (32) 
q~ e ~ ' . l l q ,  ll = I 

L e r n m a  3. Suppose that C,,, n =  1, 2 ..... is a sequence of para lM- 
epipeds such that C o ~ C,, < C, ,+, ,  n/> 1. Let ~u be the set of real-valued 
functions r/(x) on the lattice, each such function being u-periodic for 
some u>-q  and satisfying ~, ~< r/(x)~< ~,_. Then there exists a nonrandom 
set a c _ R  such that  with probabil i ty 1, a [ ~ [ ( 7 ) ] = a  and the following 
representation is true: 

a =  U a[oA((1 + g q ) 7 o ) ]  = U a[~co( (1  + g q ) 7 o ) ]  (33) 
qE.=Pq n>~ l,qEg:Pq 

Proof .  We notice that the r andom opera tor  ~/l, i.e., either of the 
operators  A and F, is metrically transitive and therefore there exists a non- 
r andom set a c _ R  such that  with probabil i ty  1, a[oA(~,)] = a .  1~6) In other 
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words, if 12 is the underlying probabil i ty space, there exists I2~ ~_ I2 with 
P(t2~) = 1 such that  

a[A(),,o)]=a for all ogel21 (34) 

Then from L e m m a  I we obviously have 

U tr[9.I((1 +gq) Yo)] = U tr[~-Ic.((1 +gq) yo)] (35) 
n ~ ~ q  n >~ l , rt ~ d~q 

Let us pick any positive e and an o9 for which (34) is true. Assume that  
2 E ~. Then in view of L e m m a  2 there exist a natural  m and a vector qJ in 
the Hilbert  space such that IIq~ll = 1 and 

11(92(~,,,,)-2) q,(x)ll ~<e, 4J(x) = o, xr  c,,, (36) 

We may  impose in (36) the extra constraints  ~b(x)=0,  xr on the 
vector ~b since the opera tor  92 is local and bounded. Then for any n > m 

92(),,,,) ~(x)  = !~c.(y,o ) r  x ~ C,, (37) 

and, therefore, treating ~b as finite-dimensional vector in the range of the 
action of the finite matrix ~c,(7,o), we obtain 

II(~r ~.) ~P(x)ll ~<e (38) 

Since e is an arbi t rary positive number,  the las t inequal i ty  clearly implies 
that 

and consequently 

2~ U a[r + gr/) ?o)] (39) 
n >>. l , t t  ~ .,,~q 

o'~_ U o'[~c,,(( 1 + gr/))~o)] 
n ~  l , q ~ . . ~ q  

(40) 

To  prove the opposite inclusion, let us pick again a positive e and a 
u-periodic r / ~ q .  Then we suppose that  2et r [92{(1 +gr/)~,o} ]. Since the 
opera tor  92 is local and bounded,  we can apply again L e m m a  2 and state 
there exists a vector qJ, I1~11 = 1, such that  

11(92((1 + g r / ) 7 0 ) - 2 ) f f ( x ) l l  ~<e, qJ(x) = 0, xr (41) 
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Now we notice that in view of Assumption 2 for any positive 6 there exists 
a set t2,, P(12,)= 1, such that 

Vf,u qa=a(f, co)~u: max I~(x)-n(x)l<~6 (42) 
.'r l~ Cm + a 

Besides, if we denote r = ~b(x- a), then since q is u-periodic, we have 
from (41) 

Va~u: 11(9.1((1 +gq)yo)-2)r <~ (43) 

Clearly, if we pick 6 small enough, then Wo~ 12, : 3a ~ u: 

Vo9~s qa=a(e, og)~u: 11(9.1(~,,o)-).)@,,(x)11<~2~ (44) 

From this we immediately obtain 

a___ a[od((1 + gr/) 7o)] , r / ~ q  (45) 

and consequently 

a_~ U a[9.l((1 +gr/)~,o) ] (46) 

Thus, (35), (40), and (46) imply the desired relations (33), which completes 
the proof of the lemma. | 

Let us introduce for a pair of real numbers ql <~qz the following 
notation: 

a(ql, q2)= U (1 +gt) ao, ao = crEg.l(yo)] (47) 
ql <~ t ~< q2 

Now we can prove the following representation for the spectrum of a 
periodic operator. 

L e m m a  4. Suppose that r/ is a u-periodic function, u>-q, and 
?.~ <~ rlt <~ rl(x) ~< qz ~< ~2. Then if C>- C", the following is true: 

a[~c(( l  +gn)Yo)] ~- U (l +tg)aE~c(Yo)]Ga(rl~,rl2) (48) 
ql~<t~<112 

In addition, with probability 1 

a[9.I(y)] ___ a(r ~z) (49) 

Proof. The proof of the lemma is based on the min-max principle (~s) 
formulated below. I 
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P r o p o s i t i o n  2 (Min-max principle). Let A ~< B be two self-adjoint 
N x N  matrices and let p,,(A), p,,(B), l<~n<~N, be the respective eigen- 
values listed in nondecreasing order. Then 

p,,(A)<~p,,(B), 1 <~n<~N (50) 

Let us notice now that 

~c(( l  +gtj)?o)<~ ~c( ( l  +gt2)Yo), tl <~t2 (51) 

r -Fg~,) ?o)~<~c((1 +gq)~o)<~CJ-Ic(( 1 +g~z) 7o) (52) 

From these inequalities and min-max principle we have 

/-t,,[~c((1 +grl, )?o)] ~</J,,[~-Ic((l +gq) Yo)] 

<~p,,[~c((l +gq2)?o) ], l <~n<~N (53) 

Besides, for any n, P , , [~c( ( l  +gO?o)], ~ <~t<~z, is a continuous func- 
tion of t in view of the inequality 

I~, , [qlc((1 + gt, ) 70)3 -/ l , , [~l  c (( 1 + gt2) 1'0)]1 ~< II q-I c (g(t2 - t, ) )'0)11 
(54) 

which, in turn, is an elementary consequence of the min-max principle. 
From this continuity and the inequalities (53) we easily get 

P.[~c(( l  +gq)?o)] ~ U p,,[r +gt)?o)], l <~n<~N (55) 
nl ~ t <~ q2 

Now the last inclusion evidently implies the first inclusion in (48), whereas 
the second inclusion follows from the first one, (30), and (31). The inclu- 
sion (49) follows immediately from (31) and Lemma 3. This completes the 
proof of the lemma. II 

Proof of Theorem I. Let us notice first that since for any positive 
constant t: ~ ~<t~<~2 we evidently have q(x)=  t ~ q ,  Lemma 3 and (47) 
imply that 

a___ a(~t, ~2) (56) 

The last equation along with the relationships (49) and (47) immediately 
imply the equality (12). As to the equalities (13) and (14), they are easily 
derived from the following elementary general statement. 

P r o p o s i t i o n  3. Let A and B be bounded self-adjoint operators in a 
Hilbert space. Then 

cr(A)~ U (a(A)+t Ilgll) (57) 
- - l~<t~<l  

This completes the proof of Theorem 1. II 
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3.2. Exponent ia l  Est imates  fo r  the  Resolvent  

In order to apply later the multiscale analysis of, c~-'~ we need exponen- 
tial estimates for the resolvent of the operator 9.I. We will do this by 
modifying and adjusting the Combes-Thomas argument to the operator 9I. 
Let us consider now the relevant resolvents. Given a self-adjoint operator 
A in either 12(Zd) or 12(2 3, C 3) and ~r we consider the resolvents 

G ( ~ , x , y ) = ( e y , ( A - ~ ) - l e x ) ,  x, y E Z  a (58) 

or  

G(~,ot, x, fl, y ) = ( e  . . . .  ( A - ~ ) - l e o . x ) ,  0c, f l= 1, 2, 3, x , y ~ Z  '1 (59) 

respectively. We will often drop ~ and fl in the notation of the resolvent for 
brevity. 

Lemma 5. Suppose that q(x) is a u-periodic function, with u ~ q ,  
which satisfies the inequalities ~ ~< r/l ~< r/(x) ~< ~/z ~< ~_, and A = 
91((1 +gq) Yo). Suppose also that dist{~, a(q~, q2)} = 6 > 0 ,  where a(q~, q_,) 
is defined by (47). Then there exists a positive constant b = b(yo, g, ~ ,  ~2) 
such that 

IG(~, x,y)l  ~< 26-1e -ha I'r-''l, x , y ~ Z  '1 (60) 

where 

Ixl = ~ I-~1 (61) 
1 ~<j ~< d 

Besides, the following identity is true: 

G ( ( , x + u , y + u ) = G ( ( , x , y ) ,  x , y ~ Z  d (62) 

Proof. For a ~ C d (in the case of the operator A, d =  3) let M~ be the 
operator of multiplication by the function Ma, which is defined by 

M~(x)=e 2"i~x, x e Z  d (63) 

If we introduce an operator AC~l= M ~ A M f  J, then we obviously have 

F{a)~= ~ 0 *l~j y vjrg~4/,~., Al"~u=V*~alx(yW~}x ~) (64) 
1 <~j<~d 

Clearly, the last representation implies the existence of a constant K =  
K(~'o, g, ~t, ~2) such that 

119.1 - 9.I~11 ~< K [a[ (65) 
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In view of (49) we have a(9.l)~a(r/l ,  r/2), which with the conditions of 
the lemma implies immediately that IIa(()ll-..<6 -1. From this and the 
inequality (65), introducing G(a, () = (9.t ~) - ~)-1, we easily obtain 

IIG(a, ~)11 ~< 26- i ,  lal < 6/(2K) (66) 

Now we notice that 

[G(a, ~)](x, y) = G(~, x, y) exp{ 2xia- (x - y ) } ,  x, y ~ Z a (67) 

From this and the obvious inequality lEG(a, ~)](x, Y)I ~< IIG(a, ~)11 we get 
the inequality (60). The identity (62) follows from general statements 
in ref. 11 for periodic local operators. This completes the proof of the 
lemma. I 

L e m m a  6. Suppose that the condition of Lemma 5 are satisfied and 
that the vectors u, v are such that q ~ u ~ v. Let us consider 

(~c, . (~,x ,y)=[(~c~(7)-()- l](x ,y) ,  x , y ~ C  v (68) 

Then the following estimate is true: 

I(~c,.((,x,y)l <<.26-1(l + 2H(v, 6))e -h~l~-yl*', x , y ~ C  v (69) 

where 

H(v, 6)= 1-[ (1--e-b~LoJl) -1, Ix-yb , =m in  I x - y - n v l  (70) 
t n E Z d  

1 <~j<~d 

Proof. The proof of the lemma is literally the same as the proof of 
the analogous statement (Lemma 2.15) in ref. 11. l 

3.3. Wegner -Type  Estimate for the Density of States 

To use the methods from ref. 12 we need a Wegner-type estimate for 
the density of states of the operators A and F. We obtain this estimate by 
a modification of Wegner's estimates (see ref. 16, Chapter lI, problems 
16-20). 

L e m m a  7. Let A, B, and C be self-adjoint matrices of the same 
finite order and E(A, d2) be the resolution of identity, i.e., A = SR 2 d2. Let 
n(A, 2) be the number of eigenvalues of A less than L Let C be a non- 
negative matrix of the same order. Then: 

(i) For any 2 

In(A, 2) - n(B, 2)1 ~< rank {A - B} (71) 
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(ii) For any continuously differentiable function f with compact 
support 

-~ n(A + tC, It) f (p)dp= Tr{Cf(A + tC)} (72) 

Proof. The proof of (71) can be found, for instance, in ref. 16. Let us 
denote by 2s(t) and es(t), respectively, the sets of eigenvalues and corre- 
sponding normalized eigenfunctions of self-adjoint matrices A(t)= A + tC. 
It is well known that 

).'~ = (A'e s, e,)= (Ce~, es) (73) 

Thus, if we introduce the Heaviside function X(2), i.e., X(2) = 1 for 2 1> 0 
and g ( 2 ) = 0  for 2 < 0 ,  we can write 

n(A + tC, /z)= ~ X(/~- )t,) (74) 
$ 

Since the derivative of X is the Dirac 6-function, we obtain 

0 fn (A+tC ,  la) f( iz)dlz=fZ2,6(la_2s)f( l~)dla=~2;f(2s)  (75) Ot 
$ s 

Using (73), we get 

f .(A + tc, sl l d . :  2 ICes, esl 
s 

= Z (Cf(2,) e,, e:) 
s 

= ~ ( C f ( A + t C ) e s ,  es)Tr{Cf(A+tC)} (76) 
s 

This completes the proof of the (72) and the lemma. I 

k e m m a  8. Let B~, s =  1 ..... m, be nonnegative matrices of the same 
finite order and let maxl.<s.<,,rank{Bs}=r. Let t,, s = l  ..... m, be non- 
negative random vlariables such that the conditional probability distribu- 
tions p~(dt) = P { ts ~ dt [ tk, k # s } have densities satisfying conditions (19) 
and (20). Let 

A =  ~ t~B~ (77) 
l < ~ s < ~ m  
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Then the measure 

fi(A, d2) = E{n(A, d2)} (78) 

is supported on the positive semiaxis and has a density such that 

fi( A, d2 ) turk 
- - ~ < - - ,  2>/0 (79) 

d2 2 

Proof. Let f be a nonnegative, continuously differentiable function 
with compact support. Applying the identity (72) to the matrix A, we 
obtain 

r n(A, Ia)f(#)dta=Tr{Bj(A)}, s = l  ..... m (80) 

Multiplying the last equalities by t,, respectively, and summing up over s, 
we get 

~ I - ~ t,-y 7 n(A,p)f(l~)d~=Tr{Af(A)} (81) 
1 ~< s ~< m u l  s 

Now we notice that for any # the function n(A, ~) is a decreasing function 
of each argument tr since the operators B, are nonnegative. Therefore, 
the derivatives on the left side of the Eq. (81) are nonnegative. Taking in 
account this observation along with the inequalities (19), we take the 
expectation of both sides of the equality (81) and get 

f )~f(,~) ~(A, d)4 

I < ~ s < ~ m  

= E 
1 < ~ s < ~ m  

I P~(dis) I dt.~ K(t~)t ~ �9 ~ Ot, I -n(A, u)f(u) du 

P,(di.) lim dt, K(t,)t, -n(A,t~)f(l~)dl~ 
T ~ ~r2 

Y X P.I i.I l m.f 
I < ~ s < . m  

~Kr ~ f P~(dis) If(IJ)dll=Krmlf(l~)dlJ (82) 
I < ~ s ~ m  

where P,(di,) is the joint distribution of all variables t except for t,, since 

0 <~ n(A [,,=o,/l) -- n(A ],,= r,/J) ~< r (83) 
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by (71). To get the last inequality in (82), we used (20). This completes the 
proof of the lemma. II 

Proof of Theorem 2. Let C be a cube in Z d centered at the origin 
and let 

A c= ~ txBx, 
.'r C 

NC(A, d2)=(DICI)-'n(AC, d2) (84) 

Using (18), it follows from ref. 16 (see Corollary 4.3 and Theorem 4.8) 
that A is a metrically transitive, essentially self-adjoint operator with 
probability 1 and 

N(A, d2)= lira E{NC(A, d2)} (85) 
C ~  Z ' /  

where the convergence is understood as the weak convergence of measures 
on R Now we notice that all operators B.,., being unitary equivalent, are 
of the same rank r. Now combining (85) and (79), we obtain the desired 
inequality (22). 

To prove (23), let us notice that 

A e =  ~ t,.(Bx) e (86) 

Moreover, (B,.)e is again a nonngative matrix with rank ~<r. Thus (23) 
follows from (79) by the usual argument based on Chebychev's inequality: 

P{dist()~' a(Ae)) <~ ~} <~ P { ft~_~,~+~ n(Ae' d2') >~ l } 

~<I ~(A e, d)J) (87) 
[.; .  - t ,  2 + ~:] 

If Assumption 1 is satisfied, then clearly the variables )~.~, x ~ Z d, form 
a metrically transitive field. On other hand, if we denote by no the 
orthogonal projection operator acting in /2(Z3, C a) [or /2(Zd)] as 

noW= ~ (~,e,.o)e,.o (or ~o~ = (~,eo)eo) (88) 

and define 

Bo ~ = V* x no(V x ~)  or B o ~ h = -  ~ O*~obj~) (89) 
l ~ j < ~ d  
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then,  if we set tx =) ' , - ,  it is easy to see that  the opera tors  A a n d  F are of 
the form (17) a n d  therefore (22) an d  (23) hold  for these opera tors .  This  
comple tes  the p roo f  of the theorem.  1 

4. PROOF OF T H E O R E M S  3 A N D  4 

Theorems  3 and  4 are proved  similar ly to T h e o r e m s  3 a n d  3' in ref. I 1. 
The  cont ro l  of  the Green ' s  func t ions  in the s ingular  regions is g iven by 
(23). To  establ ish the ini t ial  probabi l i s t ic  es t imate  for the mul t iscale  
analys is  we use (69). 

A C K N O W L E D G M E N T S  

The work  of A.F. was suppor t ed  by U.S. Air  Force  g ran t  A F O S R -  
91-0243. The  work of A.K. was par t ia l ly  suppor t ed  by N S F  g ran t  D M S  
9208029. 

REFERENCES 

1. P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109:1492 
(1958). 

2. P. W. Anderson, The question of classical localization. A theory of white paint? Phil. Mag. 
B 52(3):505-509 (1985). 

3. Sajeev John, Localization and absorption of waves in a weakly dissipative disordered 
medium, Phys. Rev. Lett. 31:304 (1985). 

4. Sajeev John, Localization of light, Phys. Today 1991(May):32--40. 
5. Development and applications of materials exhibiting photonic band gaps, J. Opt. Soc. 

Am. B 10(2):280-413 (1993). 
6. Sajeev John, Strong localization of photons in certain disordered dielectric superlattices, 

Phys. Rev. Lett. 58:2486 (1987). 
7. C. A. Condat and T. R. Kirpatrik, Resonant scattering and Anderson localization of 

acoustic waves, Phys. Rev. B 36(13):6782-6793 (1987). 
8. E. Yablonovitch, Photonic band-gap structures, J. Opt. Soc. Am. B 10(2):283 (1983). 
9. E. N. Economou and M. Sigalas, Spectral gaps for classical waves in periodic structures, 

in Photonic Band Gaps and Localization, C. M. Soukoulis, ed. (Plenum Press, New York, 
1993), pp. 317-338. 

10. A. Figotin, Existence of gaps in the spectrum of periodic structures on a lattice, J. Star. 
Phys. 73(3/4):571-585 ( 1993 ). 

11. A. Figotin and A. Klein, Localization phenomenon in gaps of the spectrum of random 
lattice operators, .L Stat. Phys. 75(5/6): 997-1021 (1994). 

12. H. Dreifus and A. Klein, A new proof of localization in the Anderson tight binding model, 
Commun. Math. Phys. 124:285-299 (1989). 

13. T. Spencer, Localization for random and quasiperiodic potentials, J. Stat. Phys. 51(5/6): 
1009-1019 (1988). 

14. W. G. Faris, Localization Estimates for Off-Diagonal Disorder (American Mathematical 
Society, Providence, Rhode Island, 1991). 



Localization in Random Media 1003 

15. M. Aizenman and S. Molchanov, Localization at large disorder and at extreme energies: 
An elementary derivation, Commun. Math. Phys. 157:245-278 (1993). 

16. L. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators (Springer- 
Verlag, Berlin, 1992). 

17. M. Reed and B. Simon, Methods of Modern Mathematical Physics: Functional Analysis, 
Vol. I (Academic Press, New York, 1972). 

18. M. Reed and B. Simon, Methods of Modern Mathematical Physics: Analysis of Operators, 
Vol. IV (Academic Press, New York, 1978). 


